Những câu hỏi liên quan
Yu gi Oh Magic
Xem chi tiết
Nguyễn Việt Lâm
28 tháng 6 2021 lúc 9:40

Đề bài sai với \(a=b=c=2\)

Bình luận (2)
Ngô Bá Hùng
28 tháng 6 2021 lúc 9:43

đề đúng nhớ áp dụng AM-GM

Bình luận (0)
Ngô Bá Hùng
28 tháng 6 2021 lúc 9:50

AD bđt AM-GM cho 3 số

\(\dfrac{b^2c}{a^3\left(b+c\right)}+\dfrac{b+C}{4bc}+\dfrac{1}{2b}\ge3\sqrt[3]{\dfrac{b^2c}{a^3\left(b+c\right)}.\dfrac{\left(b+c\right)}{4bc}.\dfrac{1}{2b}}=\dfrac{3}{2a}\)

\(\Rightarrow\dfrac{b^2c}{a^3\left(b+c\right)}\ge\dfrac{3}{2a}-\dfrac{3}{4b}-\dfrac{1}{4c}\)

thiết lập bđt tương tự r cộng lại \(\Rightarrow\dfrac{b^2c}{a^3\left(b+c\right)}+\dfrac{c^2a}{b^3\left(c+a\right)}+\dfrac{a^2b}{c^3\left(a+b\right)}\ge\left(\dfrac{3}{2}-\dfrac{3}{4}-\dfrac{1}{4}\right)\left(a+b+c\right)=\dfrac{1}{2}\left(a+b+c\right)\)

Bình luận (1)
Hoàng Tuấn Đăng
Xem chi tiết
Akai Haruma
19 tháng 12 2017 lúc 22:04

Câu a)

Áp dụng BĐT Cauchy-Schwarz:

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{b}\geq \frac{9}{a+2b}\) (1)

\(\frac{1}{b}+\frac{1}{c}+\frac{1}{c}\geq \frac{9}{b+2c}\)(2)

\(\frac{1}{c}+\frac{1}{a}+\frac{1}{a}\geq \frac{9}{c+2a}\) (3)

Lấy \((1)+2.(2)+3.(3)\) ta có:

\(\Rightarrow \frac{1}{a}+\frac{1}{b}+\frac{1}{b}+\frac{2}{b}+\frac{2}{c}+\frac{2}{c}+\frac{3}{c}+\frac{3}{a}+\frac{3}{a}\geq 9\left(\frac{1}{a+2b}+\frac{1}{b+2c}+\frac{1}{c+2a}\right)\)

\(\Leftrightarrow \frac{7}{a}+\frac{4}{b}+\frac{7}{c}\geq 9\left(\frac{1}{a+2b}+\frac{1}{b+2c}+\frac{1}{c+2a}\right)\)

Ta có đpcm

Dấu bằng xảy ra khi \(a=b=c\)

Bình luận (0)
Akai Haruma
19 tháng 12 2017 lúc 23:44

Câu b)

Áp dụng BĐT Cauchy-Schwarz:

\(\frac{1}{a}+\frac{4}{b}\geq \frac{(1+2)^2}{a+b}=\frac{9}{a+b}\)

\(\Rightarrow \frac{1}{3a}+\frac{4}{3b}\geq \frac{3}{a+b}(1)\)

\(\frac{1}{3b}+\frac{1}{2c}+\frac{1}{2c}\geq \frac{9}{3b+4c}\)

\(\Rightarrow \frac{2}{3b}+\frac{2}{c}\geq \frac{18}{3b+4c}\) (2)

\(\frac{1}{c}+\frac{1}{3a}+\frac{1}{3a}\geq \frac{9}{c+6a}\) (3)

Từ (1); (2); (3) cộng theo vế:

\(\Rightarrow \frac{1}{a}+\frac{2}{b}+\frac{3}{c}\geq \frac{3}{a+b}+\frac{18}{3b+4c}+\frac{9}{c+6a}\)

(đpcm)

Dấu bằng xảy ra khi \(a=\frac{b}{2}=\frac{c}{3}\)

Câu c)

BĐT cần chứng minh tương đương với:
\(\frac{b+c+a}{a}+\frac{2a+c}{b}+\frac{4(a+b)}{a+c}\geq 10\) (*)

Áp dụng BĐT AM-GM:

\(\text{VT}=\frac{b}{a}+\frac{c+a}{2a}+\frac{c+a}{2a}+\frac{a}{b}+\frac{a+c}{2b}+\frac{a+c}{2b}+\frac{a+b}{a+c}+\frac{a+b}{a+c}+\frac{a+b}{a+c}+\frac{a+b}{a+c}\)

\(\geq 10\sqrt[10]{\frac{ba(c+a)^4(a+b)^4}{16a^3b^3(a+c)^4}}=10\sqrt[10]{\frac{(a+b)^4}{16a^2b^2}}\)

Theo AM-GM: \((a+b)^2\geq 4ab\Rightarrow (a+b)^4\geq 16a^2b^2\)

\(\Rightarrow \text{VT}\geq 10\sqrt[10]{\frac{(a+b)^4}{16a^2b^2}}\geq 10\)

Vậy (*) được cm. Ta có đpcm. Dấu bằng xảy ra khi a=b=c

Bình luận (0)
Quách Phú Đạt
Xem chi tiết
Kuro Kazuya
28 tháng 4 2017 lúc 1:40

Áp dụng bất đẳng thức Cauchy - Schwarz

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{b^2c}{a^3\left(b+c\right)}+\dfrac{b+c}{4bc}+\dfrac{1}{2b}\ge3\sqrt[3]{\dfrac{b^2c\left(b+c\right)}{8a^3\left(b+c\right)b^2c}}=\dfrac{3}{2a}\\\dfrac{c^2a}{b^3\left(c+a\right)}+\dfrac{c+a}{4ca}+\dfrac{1}{2c}\ge3\sqrt[3]{\dfrac{c^2a\left(c+a\right)}{8b^3\left(c+a\right)c^2a}}=\dfrac{3}{2b}\\\dfrac{a^2b}{c^3\left(a+b\right)}+\dfrac{a+b}{4ab}+\dfrac{1}{2a}\ge3\sqrt[3]{\dfrac{a^2b\left(a+b\right)}{8c^3\left(a+b\right)a^2b}}=\dfrac{3}{2c}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{b^2c}{a^3\left(b+c\right)}+\dfrac{1}{4c}+\dfrac{1}{4b}+\dfrac{1}{2b}\ge\dfrac{3}{2a}\\\dfrac{c^2a}{b^3\left(c+a\right)}+\dfrac{1}{4a}+\dfrac{1}{4c}+\dfrac{1}{2c}\ge\dfrac{3}{2b}\\\dfrac{a^2b}{c^3\left(a+b\right)}+\dfrac{1}{4b}+\dfrac{1}{4a}+\dfrac{1}{2a}\ge\dfrac{3}{2c}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{b^2c}{a^3\left(b+c\right)}+\dfrac{1}{4c}+\dfrac{3}{4b}\ge\dfrac{3}{2a}\\\dfrac{c^2a}{b^3\left(c+a\right)}+\dfrac{1}{4a}+\dfrac{3}{4c}\ge\dfrac{3}{2b}\\\dfrac{a^2b}{c^3\left(a+b\right)}+\dfrac{1}{4b}+\dfrac{3}{4a}\ge\dfrac{3}{2c}\end{matrix}\right.\)

\(\Rightarrow VT+\dfrac{1}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)+\dfrac{3}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\ge\dfrac{3}{2}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)

\(\Rightarrow VT+\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{3}{2}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)

\(\Rightarrow VT\ge\dfrac{1}{2}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)

\(\Leftrightarrow\dfrac{b^2c}{a^3\left(b+c\right)}+\dfrac{c^2a}{b^3\left(c+a\right)}+\dfrac{a^2b}{c^3\left(a+b\right)}\ge\dfrac{1}{2}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\) ( đpcm )

Bình luận (0)
tnt
Xem chi tiết
Kinder
Xem chi tiết
Lê Thị Thục Hiền
13 tháng 6 2021 lúc 14:28

Có \(ab+bc+ac=abc\Leftrightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=1\)

Áp dụng các bđt sau:Với x;y;z>0 có: \(\dfrac{1}{x+y+z}\le\dfrac{1}{9}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)\) và \(\dfrac{1}{x+y}\le\dfrac{1}{4}\left(\dfrac{1}{x}+\dfrac{1}{y}\right)\) 

Có \(\dfrac{1}{a+3b+2c}=\dfrac{1}{\left(a+b\right)+\left(b+c\right)+\left(b+c\right)}\le\dfrac{1}{9}\left(\dfrac{1}{a+b}+\dfrac{2}{b+c}\right)\)\(\le\dfrac{1}{9}.\dfrac{1}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{2}{b}+\dfrac{2}{c}\right)=\dfrac{1}{36}\left(\dfrac{1}{a}+\dfrac{3}{b}+\dfrac{2}{c}\right)\)

CMTT: \(\dfrac{1}{b+3c+2a}\le\dfrac{1}{36}\left(\dfrac{1}{b}+\dfrac{3}{c}+\dfrac{2}{a}\right)\)

\(\dfrac{1}{c+3a+2b}\le\dfrac{1}{36}\left(\dfrac{1}{c}+\dfrac{3}{a}+\dfrac{2}{b}\right)\)

Cộng vế với vế => \(VT\le\dfrac{1}{36}\left(\dfrac{6}{a}+\dfrac{6}{b}+\dfrac{6}{c}\right)=\dfrac{1}{36}.6\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)=\dfrac{1}{6}\)

Dấu = xảy ra khi a=b=c=3

Bình luận (0)
Lê Thị Thục Hiền
13 tháng 6 2021 lúc 14:46

Có \(a+b=2\Leftrightarrow2\ge2\sqrt{ab}\Leftrightarrow ab\le1\)

\(E=\left(3a^2+2b\right)\left(3b^2+2a\right)+5a^2b+5ab^2+2ab\)

\(=9a^2b^2+6\left(a^3+b^3\right)+4ab+5ab\left(a+b\right)+20ab\)

\(=9a^2b^2+6\left(a+b\right)^3-18ab\left(a+b\right)+4ab+5ab\left(a+b\right)+20ab\)

\(=9a^2b^2+48-18ab.2+4ab+5.2.ab+20ab\)

\(=9a^2b^2-2ab+48\)

Đặt \(f\left(ab\right)=9a^2b^2-2ab+48;ab\le1\), đỉnh \(I\left(\dfrac{1}{9};\dfrac{431}{9}\right)\)

Hàm đồng biến trên khoảng \(\left[\dfrac{1}{9};1\right]\backslash\left\{\dfrac{1}{9}\right\}\)

 \(\Rightarrow f\left(ab\right)_{max}=55\Leftrightarrow ab=1\)

\(\Rightarrow E_{max}=55\Leftrightarrow a=b=1\)

Vậy...

Bình luận (0)
Nguyễn Việt Lâm
13 tháng 6 2021 lúc 14:46

2,

\(ab\le\dfrac{1}{4}\left(a+b\right)^2=1\Rightarrow0\le ab\le1\)

\(E=9a^2b^2+6\left(a^3+b^3\right)+5ab\left(a+b\right)+24ab\)

\(=9a^2b^2+6\left(a+b\right)^3-18ab\left(a+b\right)+5ab\left(a+b\right)+24ab\)

\(=9a^2b^2-2ab+48\)

Đặt \(ab=x\Rightarrow0\le x\le1\)

\(E=9x^2-2x+48=\left(x-1\right)\left(9x+7\right)+55\le55\)

\(E_{max}=55\) khi \(x=1\) hay \(a=b=1\)

Bình luận (0)
Nguyên Nguyễn Khôi
Xem chi tiết
ILoveMath
Xem chi tiết
Eren
19 tháng 1 2022 lúc 22:43

Bài 1: 

a) Áp dụng bđt Cô - si:

\(\dfrac{a}{b^2}+\dfrac{1}{a}\ge\dfrac{2}{b}\)

Tương tự với 2 phân thức còn lại của vế trái rồi cộng lại, ta có:

\(\dfrac{a}{b^2}+\dfrac{b}{c^2}+\dfrac{c}{a^2}+\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{2}{a}+\dfrac{2}{b}+\dfrac{2}{c}\)

=> đpcm

Bài dù a + b + c = 2021 hay 1 số bất kì thì bđt luôn \(\ge\dfrac{3}{2}\). Bạn có thể tham khảo bđt Nesbitt

Bình luận (0)
Minh Hiếu
19 tháng 1 2022 lúc 22:54

Bài 2:

\(P=\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}\)

\(=\dfrac{2021-\left(b+c\right)}{b+c}+\dfrac{2021-\left(c+a\right)}{c+a}+\dfrac{2021-\left(a+b\right)}{a+b}\)

\(=2021\left(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}\right)-3\)

Áp dụng BĐT Svacxo, ta có

\(P\) ≥ \(\dfrac{9}{2}-3=\dfrac{3}{2}\)

Dấu"=" ⇔ ...

Bình luận (0)
Lê Phương Mai
19 tháng 1 2022 lúc 23:06

Sau khi đã đi tham khảo 7749 người thì đã cho ra một kết quả:v

Bài 2. \(P=\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}\)

\(P=\dfrac{a}{b+c}+1+\dfrac{b}{c+a}+1+\dfrac{c}{a+b}+1-3\)

\(P=\dfrac{a+b+c}{b+c}+\dfrac{a+b+c}{c+a}+\dfrac{a+b+c}{a+b}-3\)

\(P=\dfrac{(2a+2b+3c)( \dfrac{1}{b+c}+\dfrac{1}{c+a}+\dfrac{1}{a+b})}{2}-3 ≥ \dfrac{9}{2}-3=\dfrac{3}{2}\)

Dấu `"="` xảy ra:

\(\Leftrightarrow \begin{cases} a=b=c\\ a+b+c=2021 \end{cases} \)

\(\Leftrightarrow a=b=c=\dfrac{2021}{3}\)

Vậy \(min \) \(P=\dfrac{3}{2}\) khi \(a=b=c=\dfrac{2021}{3}\)

Bình luận (0)
ILoveMath
Xem chi tiết
Tuyển Trần Thị
Xem chi tiết
Lightning Farron
17 tháng 11 2017 lúc 0:23

Từ \(7\left(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}\right)=6\left(\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ca}\right)+2017\)

\(\Leftrightarrow7\left(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}\right)\le6\left(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}\right)+2017\)\(\Leftrightarrow\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}\le2017\)

Áp dụng BĐT Cauchy-Schwarz ta có:

\(T=\dfrac{1}{\sqrt{3\left(2a^2+b^2\right)}}+\dfrac{1}{\sqrt{3\left(2b^2+c^2\right)}}+\dfrac{1}{\sqrt{3\left(2c^2+a^2\right)}}\)

\(=\dfrac{1}{\sqrt{\left(2+1\right)\left(2a^2+b^2\right)}}+\dfrac{1}{\sqrt{\left(2+1\right)\left(2b^2+c^2\right)}}+\dfrac{1}{\sqrt{\left(2+1\right)\left(2c^2+a^2\right)}}\)

\(\le\dfrac{1}{2a+b}+\dfrac{1}{2b+c}+\dfrac{1}{2c+a}\le\dfrac{1}{9}\left(\dfrac{2^2}{2a}+\dfrac{1^2}{b}\right)+\dfrac{1}{9}\left(\dfrac{2^2}{2b}+\dfrac{1^2}{c}\right)+\dfrac{1}{9}\left(\dfrac{2^2}{2c}+\dfrac{1^2}{a}\right)\)

\(\le\dfrac{1}{9}\left(\dfrac{3}{a}+\dfrac{3}{b}+\dfrac{3}{c}\right)\)\(=\dfrac{1}{3a}+\dfrac{1}{3b}+\dfrac{1}{3c}\le\sqrt{\left(\dfrac{1}{81}+\dfrac{1}{81}+\dfrac{1}{81}\right)\left(\dfrac{9}{a^2}+\dfrac{9}{b^2}+\dfrac{9}{c^2}\right)}\)

\(\le\sqrt{\dfrac{1}{81}\cdot3\cdot9\cdot2017}=\sqrt{\dfrac{2017}{3}}\)

Vậy \(T_{Max}=\sqrt{\dfrac{2017}{3}}\) khi \(a=b=c=\sqrt{\dfrac{3}{2017}}\)

So kimochiii~

Bình luận (0)